A unique Golgi apparatus distribution may be a marker for osteogenic differentiation of hDP-MSCs.

نویسندگان

  • Murat Kasap
  • Erdal Karaoz
  • Gurler Akpinar
  • Ayca Aksoy
  • Gulay Erman
چکیده

Stem cell markers are utilized to isolate or identify stem cells. So far, many stem-cell-specific markers have been described, although some of them turned out to be not as specific as it was originally proposed. In this study, we sought to search for a specific stem cell marker that would be phenotypically helpful, characteristically specific, economically affordable and easy to use. Because organelles are one of the major characteristics of eukaryotic cells, we asked the question of whether organelle characteristics might be a useful tool for stem cell characterization. We studied distribution and characteristics of the endoplasmic reticulum, the mitochondria and the Golgi apparatus in human dental-pulp-derived mesenchymal stem cells before and during osteogenic differentiation. Although it was not possible to find a useful macromolecular marker for stem cell characterization, we found that during osteogenic differentiation, the stem cells changed their Golgi characteristics and displayed a unique in vivo pattern. We analysed these unique Golgi structures and proposed a potential osteogenic differentiation marker for human dental-pulp-derived mesenchymal stem cells. This pattern may be used in the evaluation of osteogenic differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تاثیر داروی زولدرونیک اسید در بیان و متیلاسیون ژن BSP در طول تمایز استئوبلاستیک سلولهای بنیادی مزانشیمی

Background and Aim: Bone sialoprotein (BSP) is a specific marker of osteoblastic differentiation. In this research, the effect of Zoledronic Acid on BSP expression and methylation status during osteoblastic differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: In this experimental study, MSCs were isolated from human bone marrow. For osteogenic differentiation,...

متن کامل

Endoplasmic Reticulum (ER) Stress Inducible Factor Cysteine-Rich with EGF-Like Domains 2 (Creld2) Is an Important Mediator of BMP9-Regulated Osteogenic Differentiation of Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are multipotent progenitors that can undergo osteogenic differentiation under proper stimuli. We demonstrated that BMP9 is one of the most osteogenic BMPs. However, the molecular mechanism underlying BMP9-initiated osteogenic signaling in MSCs remains unclear. Through gene expression profiling analysis we identified several candidate mediators of BMP9 osteogenic si...

متن کامل

تاثیر Chitosan بر ویژگی‌های استئوژنیک سلول‌های بنیادی مزانشیمال پالپ دندان شیری

Background and Aims: The exfoliated human deciduous tooth contains multipotent stem cells [Stem Cell from Human Exfoliated Deciduous tooth (SHED)] that identified to be a population of highly proliferative and clonogenic. These cells are capable of differentiating into a variety of cell types including osteoblast/osteocyte, adiopcyte, chondrocyte and neural cell. The aim of this study was to ev...

متن کامل

Preparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells

Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...

متن کامل

The Effects of BMP-2, miR-31, miR-106a, and miR-148a on Osteogenic Differentiation of MSCs Derived from Amnion in Comparison with MSCs Derived from the Bone Marrow

Mesenchymal stromal cells (MSCs) offering valuable anticipations for the treatment of degenerative diseases. They can be found in many tissues including amnion. MSCs from amnion (AM-MSCs) can differentiate into osteoblast similar to that of bone marrow-derived MSCs (BM-MSCs). However, the ability is not much efficient compared to BM-MSCs. This study aimed to examine the effects of BMP-2 and miR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell biochemistry and function

دوره 29 6  شماره 

صفحات  -

تاریخ انتشار 2011